
Report No. WH97JR00-A002

Sponsored by

REAL-TIME NETWORK
MANAGEMENT

FINAL TECHNICAL
REPORT K

CD
July 1998 CO

CO
O
W
O

Defense Advanced Research Projects Agency 00

ITO °
W

Issued by U.S. Army Aviation and Missile Command Under

Contract No. DAAH01-98-C-R040

DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

t^GquALmmsPEami

Report No. WH97JR00-A002

REAL-TIME NETWORK
MANAGEMENT

Synectics Corporation
111 East Chestnut Street
Rome, New York 13440

Joseph R. Riolo, Principal Investigator

Telephone: 315-337-3510

Effective Date of Contract: 24 November 1997 RTNM Final Technical Report
Contract Expiration Date: 24 July 1998

The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either express or implied,

of the Defense Advanced Research Projects Agency of the U.S. Government.

DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

Synectics Corporation Report No. WH97JR00-A002

Table of Contents

1.0 INTRODUCTION 1

2.0 OBJECTIVES 1
2.1 Task 1 - Mathematical Modeling 2

2.1.1 Local Perspective 4
2.1.1.1 M/M/l/k Model of a Single Server 4
2.1.1.2 Queuing models for Switches (Routers), Nodes, and

Ports 6
2.1.1.3 Model Selection Rules 7
2.1.1.4 M/M/l Model 8
2.1.1.5 M/M/l/k Model 9
2.1.1.6 M/D/l Model 10
2.1.1.7 M/G/l Model 10
2.1.1.8 An Architecture for a Bridge 11

2.1.2 Global Perspective 12
2.1.2.1 WAN-class Networks 12
2.1.2.2 IEEE 802.3-class Networks 13

2.2 Task 2 - Object Modeling for Architecture 14
2.2.1 Managed Objects 14
2.2.2 Model Architecture 16

2.3 Task 3 - Prototype Implementation 18
2.3.1 Installation of Software 18
2.3.2 Initial Data Collection 19
2.3.3 Creation of JMAPI-managed Objects 20
2.3.4 Integration of Components 22
2.3.5 Explanation of Implementation 22

3.0 REFERENCES 28

4.0 GLOSSARY 29

Table of Figures

Figure 1. Network Layer Level 4
Figure 2. Typical Bridge between LANs 11
Figure 3. A Detailed View of a Port on a Bridge 11
Figure 4. A View of Model Interface 17
Figure 5. Explanation of Implementation 23
Figure 6. Interfaces According to SNMP Variables 24
Figure 7. The IP Layer According to SNMP Variables 25

Synectics Corporation Report No. WH97JR00-A002

1.0 INTRODUCTION

This document is the Final Technical Report (Contract Data Requirements List [CDRL] A002)
for contract number DAAH01-98-C-R040 entitled, "Real Time Network Management." This
was a 7-month effort, which ran from 24 November 1997 to 24 July 1998. Synectics was the
prime contractor with the State University of New York (SUNY) Institute of Technology as a
subcontractor on the effort.

Synectics Corporation submitted a proposal abstract, in response to DARPA SBIR SB972-076
(Real-Time Network Performance Diagnosis), for developing methods for diagnosing network
performance problems in real time. It supported the dominant theme of the Phase I SBIR with
research into the problem and development of a prototype.

The first phase of the project was to develop a prototype system that included interactive
graphics for describing the components of a local area network (LAN) and its interconnections to
other LANs or internetworks. There were three major considerations for this development effort.

□ The description had to include hooks for modeling the expected behavior (bandwidth,
latency, queuing, etc.), and for monitoring the runtime behavior via traffic probes,
Simple Network Management Protocol (SNMP), remote monitoring, load
measurements, etc.

□ The modeled and observed behaviors had tot be displayed in a lucid manner that
assisted analysts and operators, and could be easily modified.

□ The LAN descriptions must be modifiable and composable in a simple fashion.

2.0 OBJECTIVES

The objective of our effort was to develop methods for diagnosing network performance
problems in real time for DARPA. According to our Phase I research, it is possible to collect
data on the network and morph it into queuing models to produce information about the network
and physical layers of nodes on a network.

The program consisted of three tasks. In the first task Synectics assembled a set of metrics that
formed an accurate network traffic model, identified mechanisms for hooking well-researched
mathematical performance models into software artifacts to allow the definition of expected
behavior, and identified deviations from such behavior. Secondly, Synectics described the
logical architecture of the proposed performance monitoring system as an object model. Finally,
Synectics developed the prototype using Java, with support from JMAPI (Java Management

Synectics Corporation Report No. WH97JR00-A002

Application Programmer's Interface) and JDBC (Java Database Connectivity), and the object
model designed in the second task.

2.1 TASK1 - MATHEMATICAL MODELING

A networking environment is a dynamic entity encompassing a finite number of objects, each
functioning to operate within a specific set of constraints. Our goal was essentially to monitor
this environment, measure and make inferences on its observables, derive the appropriate states
of interest, and report them appropriately in order to provide a diagnostic basis to network
managers to draw their attention to exceptional and abnormal events. Indeed, to appropriately
accomplish these activities and reasonably correctly in a real-time framework, we needed various
models of our object to depict both its own state and that of its constituents. A model of the
entire object as a single entity may not be suitable at its constituent levels. Not only should we
be able to appropriately model each one of the network objects, such as a switch or a link, but we
should also be able to model the entire network as a single entity given our models of its
constituents. Secondly, a single model of a dynamic entity may not be adequate. Even if such a
model depicts only stationary states, as they almost always do, one may be forced to consider
different types of models to handle different equilibrium situations. For instance, at a low traffic
load, we might use one type of model for an entity, but when the traffic load becomes heavy, we
might have to use another model to more accurately depict the activity there. If this is desirable,
then switching from one model to another must be triggered by the presence of an event at a
meta-level of the models.

The local states as perceived at each object site are derived from the raw observed data (the
observables) as appropriate aggregates. The global system state is a list of all aggregate local
states of the network along with an appropriate set of computed temporal invariants based on
inter-object coupling over the local state space.

The object network is seen as a hierarchical abstraction as indicated below.

NETWORK = {Nodes, Links}
Nodes = {Ports, Switches}
Link = (Physical connection between two nodes) ... (1.0)

A local state variable &0bj(t) is an attribute of an object at a time t, and we assume that its short-

term time-averaged value is "stable" and is denoted by $0y
0ch(t) for a specific epoch. The long-

term time averaged value of this state is the quantity (which converges to a steady-state value if
the network converges to a steady state).

Synectics Corporation Report No. WH97JR00-A002

#obj= — l#0Tj°Chd(epoch) ...(1.1)
nep

where nep is the epoch density over the period of observation on which the long-term behavior is

sought. Our reporting profile is envisaged as follows. For every object obj at any arbitrary time
t, the object manager is ready to report the following.

obj = (object ID, object class)
time = current_time t

state_list(t)=d(t) = (&!(!),#2(t) 0p(t)) . . . (1.2a)

previous_state_aggregate(epoch_ number = -!)=& =(tff ,$2 > ••• &p) • • • (l-2b)

over current and previous epochs ep0 and ep_}, respectively. Note that state _list(t) is always the
current state of the object in the current epoch ep0.

The estimated state list at the next epoch ep+1, as inferred from the current and the past behavior
through an appropriate intelligent estimator (we assume that we have appropriate model(s)
necessary to compute this), look like

next_state_aggregate(epoch_number = +1) = j}+1 = (Sf1,S^1, ... , ö^1) . . . (1.2c)

And finally, the object would post its long term average of the state list over all the epochs in a
given time-interval T as

^=(^,^2,..., 0p, ... ,S1G.S2G. -. SqG) ...(1.2d)

In this case, a state variable JM is the long-term average list of the state of the object M, while
the gmG is the long-term average of some computed variable

SmG=fG(0i>*2.-,0p) .-.(1.2e)

which has a global relevance and a semantic such as congestion level. We assume that, on
whatever model we propose to project this measure, it is operationally stable and observable over
time and it consists of two spatially separated objects P and Q.

SmG(t+6t) = <;mG(t) and

imG(P) = imG(Q) ...(1.2f)

Note that all these states were either derived from the local observables and/or inferred from both
the previous and the current states. The local observable at an object switch may be minimally
the number of messages and requests queued and being serviced there, the server service rate, the
arrival rate at the server queues, or the service discipline (e.g., FIFO [first in, first out], priority,

Synectics Corporation Report No. WH97JR00-A002

polling, etc.). If it were a link, the local observable could be its capacity (static) and its data
flow-rate (dynamic). For a switch, it could also include the fraction of packets (or cells)
dropped, packet injection rates at the links to which it is connected, or the input/output queue
densities at the buffers to the links.

2.1.1 LOCAL PERSPECTIVE

We define local perspective as a view of a single network object in the context of the entire
network in which it is embedded. In this section we will focus on the state computation of a
single node or a link in a network. We will offer a low-to-moderate traffic description of a
server node in an M/M/l/k architecture. Other realistic models would be delivered in subsequent
reports.

2.1.1.1 M/M/1/K MODEL OF A SINGLE SERVER

The environment seen from a node appears as follows at the network layer level.

Figure 1. Network Layer Level

Terminals,
Processes Requesting/Receiving Processes

A
To Terminals pXK From Terminals A ™'

V

NodeK At the Network Level

From the Network aK>
/

f

V

v
1 "o the Network (1-p)XK

Network
Interface

The remaining network as
seen at the interface

The packet throughput at a node K, XK, is apportioned between two streams. The inbound
stream moving toward the connecting stations and processes receives pXKof the node traffic.
The remaining traffic appears at the interface to be injected into the network as seen at the
interface. If the loss at the interface is lossint, then the amount going into the network is
(l-lossint)(l-pXK). Similarly, if a portion of the incoming traffic from Transmission Control
Protocol (TCP) and Internet Control Message Protocol (ICMP) layers is dropped at the node K,
the actual traffic entering from above into the node X ™' would be less than what these nodes are
sending to the node K.

For our convenience, let us assume that the Jackson assumption holds and the node is seen as a
finite buffer Markovian server so that it could be modeled as an M/M/l/k system (k being the
maximum number of packets the buffer is allowed to hold). In this perspective,

Synectics Corporation Report No. WH97JR00-A002

The average total traffic entering into the node, X K = X £"f + aK X pkts/sec
The average packet transmission rate at node K = pK pkts/sec
The buffer size at the node = k

The blocking probability at the node pblock = r—rPk given that its total buffer volume is for k
l-pk+1

packets. Here p = ——. We also obtain the following equilibrium results.
MK

(a) The average number of packets in the node (at the queue and at the server)
p (k + l)pk+1 ., , k tU

NK=~r— j^]- if * K* MK=^, otherwise
1-P 1-p 2

(b) The effective average arrival rate into the node is X K(l-pk)

N
(c) Using, Little's law, the expected response time at the node TK =• K

^K(J-Pk)

(d) Average node utilization rate is p(l-pk)

(e) The node idle probability p0 = £—

(f) Queuing time spent in the buffer rfe = NK
~

1+P
°

Ml-Pk)

For convenience, we would use the notation A6 to denote an appropriate time average (or a
weighted average) of an observable 6(t) over an observation period of size T. We assume 61 to
be the size of a monitoring interval.

A6 = Us(et+St-dt)dt

Then, in terms of our observables as obtained from the Management Information Base (MIB),
the following would be realized for a node.

(a) The average packet traffic flow going into the network, (l-p)XK =————-—-
ot

(b) The average traffic load delivered to the network layer aKX = f((Aif!2+Aifll)/St)
where/(J has to be determined.

(c) The average traffic load delivered to the upper-layer from the node pXK =—l^—
ot

Synectics Corporation Report No. WH97JR00-A002

(d) The average traffic load delivered from the TCP/ICMP to the internet protocol (IP)

layer of the node X f = ^-^-
ot

(e) The blocking probability at the IP level pk = ——— = T~rPk

AiplO]-pk+1

2.1.1.2 QUEUING MODELS FOR SWITCHES (ROUTERS), NODES, AND PORTS

We assume that, for our switches, nodes, and ports, these could be described by appropriate
queuing models M/M/l, M/M/l/k, M/G/l, etc., if the server were a single server or could be
modeled as a single server.

A typical node is modeled as a tandem queue. We assumed Jackson's assumption holds in the
sense that the queues are separable even though individually they might not be M/M/l queues.
We considered a node (or a port) as a tandem queue served by two sets of servers, the IP-SAP
(Service Access Point) and the server at the interface, which we simply called the interface
server. The interface server transmits requested frame-traffic to the network and receives frames
to send up via the data-link layer to the IP-SAP, or the IP server. We assumed the service rates
at the IP layer and at the interface are given by the parameters p1 and n2, respectively. For
convenience, we let X1 -X1 and X2=X2. Given these, we defined traffic densities at the
servers aspj^Aj/jUi and p2 = X2/p2. In terms of these variables the node's states could be
obtained using the appropriate queuing model.

One major problem here was the estimation of the IP server rate //7. There is no appropriate
SNMP variable by which to obtain this information. Yet, at such a service site where packet
fragments are to be reassembled, the IP-SAP has to wait for those extreme cases where the
fragments do not turn up until the last moment. (Some never arrived.) This was a time-intensive
operation and therefore could not be ignored. One could approximate the average, effective
packet service time as

1 Uit , where ns
r'£ssemb denotes the number of successful and unsuccessful

^1 (nreassemb + nreassemb >

packet reassembly operations within the given time interval St. It is reasonable to assume that
nLassembls most likely positively correlated with the total number of fragments received at the IP
layer which, in turn, is linearly dependent on the incoming traffic rate X x. The factor U appears
here as the server's utilization factor. We could express this as the requirement that

f o , total fragment received , ™ -.-.,. ... ni,ammh =Tlnreassemb > where 7] = - 7. Then our effective service time becomes
reunenw tofflj correct fragments

1 U6t

Pi Keassembd + n)

Synectics Corporation Report No. WH97JR00-A002

For each node, we would obtain from the SNMP data:

(a) The average packet arrival rate into the system A} pkts/sec at the IP layer, and the
X 2 frames per sec at the interface.

(b) The average service time for a packet — sec at the IP layer and — sec at the
Mi M2

interface.

(c) The average number of packets dropped at the node per unit time nd pkts where the
index / e {Ip_ layer, Interface} .

(d) The variance of the inter-arrival times a\/x obtained from the past data at both the IP

layer and the interface.

(e) The variance of the service time aj/fl obtained from the past data at both the IP layer

and the interface.

If nd =0, then we are effectively dealing with an infinite buffer queuing system (buffer-size k

-»°°). If the variance of/„ = —, then we contend that the server is exponentially distributed.
M

Normally, we would assume the arrival process to be Poisson distributed in which case the inter-
1 arrival time must be exponentially distributed with a variance a]/x = —. However, if we find

A

the variance substantially low, say, 1/qX2, where q is greater than 2, then we consider the
arrival process to be Erlang-q distribution. At an interface, the service time is essentially the
transmission time of a frame.

2.1.1.3 MODEL SELECTION RULES

(a) The default model would be M/M/l for each queuing subsystem.

(b) The current model would be the last selected model unless it is switched to another one.

(c) If nd =0, then the selected model would be one of M/M/l, M/G/l, M/Ek/1, Ek/M/1,
M/D/l,orGI/G/l.

(d) If nd * 0, then the switched model would be M/M/l/k. The blocking probability pk for
the model would be computed as pk=nd/X.

(e) Once the underlying model for a node changes to a new one, the earlier derived state
results would not be used to infer the future results. Note that this is valid only for
"derived" results. The observed or monitored variables would still be inferred when
needed from past results.

Synectics Corporation Report No. WH97JR00-A002

(f) If the variance of the arrival distribution is about for an arrival marked with X,
mX2

then the selected model would be Em for the arrival part. Similarly, if the variance of

the service distribution is about —- for the service marked with p, then the selected
nji

model would be En for the service side. Thus, a chosen model might appear as Em/En/1
instead of M/G/l if both the arrival and the service time distributions appear as
Erlangan.

(g) If the length of the service time per entity is not exponentially distributed (i.e., service
rate variance is different from 1/p2 when the expected service time is 7///), we
would use a general service time distribution and switch to an M/G/l or GI/G/1 model.
A GI arrival distribution would be considered if the inter-arrival times are independent
and identically distributed. We would use the GI/G/1 type model, particularly in a
heavy traffic load situation when traffic intensity p is near to 1.0.

(h) If the service time per packet/frame is effectively a constant, then we would use the
M/D/l model. This would be the preferred model for ports in a bridge.

2.1.1.4 M/M/1 MODEL

The parameters for this model are:

□ Arrival rate X pkts/sec into a queue , and

Q Service rate p pkts/sec of the server.

These are time averaged over an interval during which the model is assumed to be valid. Given
these, we would then compute the following.

(a) The traffic intensity, p = — Erlang

(b) The server utilization, Unode = p

(c) The probability that the number of packets or frames in the system is no less than n,
p(N>n) = pn

(d) The average number of packets or frames in the system L = p

1-p

2

(e) The average number of packets or frames in the queue Lq= —

(f) The residence time (the waiting time) in the system T =

P

1

Md-P)

Synectics Corporation Report No. WH97JR00-A002

(g) The average queuing time in the server queue Tq =
P(l-p)

(h) The queuing time that r percent of the customers do not exceed, i.e., the rth percentile
f 100p ^

queuing time nq(r) = Tln
100-r)

(i) The rth percentile residence time nT(r) = T ln\

If the average service time is not directly available, one could compute it as a derived variable
2Ä

^effective = r+A and jueffective = , provided Lq*0. This may be necessary when the
-Lq+jL2

q+4Lq

server is perceived as a logical server such as at a higher level in a protocol suite.

It is possible that even though the computed p might appear to be greater than zero, the observed
queue length at a node may be zero at a specific time point. Note that these are all time-averaged
measures; they need not always correspond to specific observation at a given time point. Also,
all percentile formulations would yield negative values when p is small; in such events, all
negative values should be reported as zero.

2.1.1.5 M/M/1/K MODEL

In this case, the server has a finite buffer of size k to accommodate incoming packets/frames.
This would be indicated when we observe packets/frames that we assume are discarded owing to
lack of buffer. We assume, as before, the arrival rate and the service rate to be A and p,
respectively.

(a) Define u = —. The probability that the system is at state n (with n packets/frames) is
P

, (l-u)un .. given by Pn =•! —- if u < 1
l-uK+1

1 r i if u = 1
k + 1

1-u In particular, probability that the system is idle p0
l-uk+1

(b) Probability that a packet/frame would be discarded for lack of buffer space

_ (—uju_ Qjven ^s we could obtain the effective buffer size k over a time
l-uk

Pk - Ml

Synectics Corporation Report No. WH97JR00-A002

interval as k effective
u(l-pk)

In u
, ifu < 1

Pk
--/, ifu = 1

(c) The actual arrival rate at which packets/frames enter the system X a = (l-pk)X

(d) The expected number of packets/frames in the system L is

T u[l-(k + l)uk +kuk+1] .x L = — ■ — if u < 1
(l-u)(l-uk+1)

k
= — ifu = l

2

(e) The expected queue length Lq=L-(l-p0)

(f) The expected residence time T=L/Aa

(g) The expected queuing time Tq=Lq/Aa

(h) The utilization of the server U =(l-pk)u

2.1.1.6 M/D/1 MODEL

In this case, for given X, n, p, we obtain the following. Note that this model results when the
variance of the service time at a server is close to zero. This would be applicable to model ports
in a bridge.

L= p+
2(l-p)

La=— q 2(l-p)

T = U-
ß 2ß(l-p)

T = ^
q 2/Ml-p)

2.1.1.7 M/G/1 MODEL

For this model, assume we have obtained the variance of the service time of as well as the mean

service time as 1/n for a server. Let C2
S =ii2o2

s (for an exponential server this will equal 1).
Then,

L = p+
p2a+c2

s)
2(l-p)

Ln =L-p

T = —+-
M M(1~P)

T =T
9 M

10

Synectics Corporation Report No. WH97JR00-A002

2.1.1.8 AN ARCHITECTURE FOR A BRIDGE

A bridge connects two or more LAN segments working entirely in the link and physical layers.
In other words, there is no IP layer associated with a bridge and a bridge would receive only
frames, not packets. A typical transparent bridge connecting Ethernet LANs may be viewed in
Figure 2.

Figure 2. Typical Bridge between LANs

LAN 3

CM

Z

P2

A

P3

V

Bridge

PI

i

> '

P4

z
<

LAN1

In the above example, a bridge with four active ports is used to connect four different LANs. For
each port i>- we envisage a double tandem queue model, as for switches and nodes shown earlier,
except that the service rate for the first queue would be //; -»<» . This amounts to effectively
discounting the first queue.

Therefore, the queue at a port Pi would be seen as a single queue. Thus each port of the bridge is
equivalent to a node as modeled earlier. Diagrammatically, it appears then as a single queue (see
Figure 3).

Figure 3. A Detailed View of a Port on a Bridge

From a LAN

From the Bridge

To the LAN

Port

r*m&\

11

Synectics Corporation Report No. WH97JR00-A002

2.1.2 GLOBAL PERSPECTIVE

The abstraction at the global network level appears as follows. The global network may be seen
as a network belonging to a WAN (Wide Area Network) class or it may be a LAN type. Even
within these two categories many different possibilities exist, each of which may qualify as a
possible class for the network in question.

In this section, we will highlight the global states of networks pertaining to two common
categories, the WAN architecture and the IEEE 802.3 LAN architecture. In the next report, we
would address other common LAN architectural models and observe network global states in
those possible architectures.

The model suite for the global network state computation would include minimally one model,
which would be derived from the individual local states of the network components. We should
recall that in our design the global network state net(t) is an appropriate abstraction based on the
local states. Thus, the global state would depict mean network throughput, mean network delay,
etc.

We assume the following. For the time being, we would approach the global state through a
mean value analytical approach. We would assume that the arrival rate Ä and the total service
demand at any server would be appropriately computed. Given this, we now indicate how the
relevant parameters for the global state are to be computed for our two network classes, the
WAN and IEEE 802.3 LANs. As indicated earlier, the token ring architecture framework would
be outlined in the next report.

2.1.2.1 WAN-CLASS NETWORKS

In WANs, the network is seen as a point-to-point, store-and-forward type, packet-switched
subnet over a wide distance. Let us assume [4]:

(a) Number of reception/transmission ports of the entire system = Npom

(b) Number of switches in the system = Nmitch

(c) Total number of active nodes in the system = Nports + N switch

(d) Mean throughput rate at a node K = xK packets/sec (reported for a local object K)

(e) System throughput rate = x packets/sec (to be derived)

(f) Mean response time (queuing time + service time delay) at a node K = E(RK) sec
(reported)

(g) Mean residence time (total delay) per packet in the system = E(R) sec (to be derived)

12

Synectics Corporation Report No. WH97JR00-A002

(h) Total mean external arrival rate of packets at a port K = ^pkts/sec (reported)

^ ports

(i) Total traffic in the network system = A packets/sec = S^ pkts/sec (derived)

Little's law yields the following.

Npom

AE(R)= 1E(RK)XK ...(4.1)

Since packets are most likely switched through more than an one internal node, we note that

Total system throughput x = If xK > i ... (4.2)

with the mean delay in the network

^switch Xv X „ Xif „ Xv /A s-w E(R) = I -^-E(RK) = T1-^E(RK)= Vl-fE(RK) ...(4.3)
K=l A AX A

where V is the mean visit count of nodes per packet (i.e., the number of nodes visited by a
generic packet). Note that the mean delay per node per packet over the system is then

E(Rnode)=l^-E(RK) ...(4.4)

This perspective is derived for the network layer. We could similarly derive the global states as
seen at the physical layer where traffic flow is in bits/sec rather than pkts/sec.

Also, let us suppose DK is the total observed service time received by a generic packet at the
server K. We'll identify a threshold demand D. Since XDK =UK< 1.0 for all servers supporting

a network throughput X, DK < — and the one with the highest value must act as a bottleneck,

\.&.,Dhottle_neck=max{D1} . . . (4.5). We may either report Dbott!e_neckor any DK>Das

potential problem parameters.

2.1.2.2 IEEE 802.3-CLASS NETWORKS

For this class of networks, we would be concerned solely with Ethernet-based LANs [5]. Instead
of modeling an Ethernet via an exact queuing system, which would be extremely difficult and
possibly not be worth the effort, we desire to capture its behavior via a queuing network whose
parameters could be fine-tuned to correlate actual observation with predicted values.

Let us consider the Carrier Sense Multiple Access with Collision Detection (CSMA-CD)
protocol that controls the behavior of such a network at the system level. A typical process
consists of alternating contention and a frame transmission period; idle periods will not result if

13

Synectics Corporation Report No. WH97JR00-A002

we assume there is at least one busy station at all times. We would later deviate from this
assumption by incorporating an appropriate factor to reflect possible idle time for the channel.
Assuming a constant load for the network with an average of n active stations connected to it, we
obtain the following.

The maximum probability A that one station will successfully acquire the channel is

A = (i-l)n-1 ...(4.6a)
n

The average length of the contention interval between two successive transmissions is

C =- = (/--/-" ...(4.6b)
A n

The channel efficiency (utilization) rate on the average is

^-TTc-^T ■••<46c)

AF

The average delay per station is

D=(F + C)(n-1)/B ...(4.6d)

where B is the channel bandwidth rate. One could also post an interesting measure

C(n) = ^E(n) ... (4.6e)
F

This is a system-level measure, which may be of importance when we want to know how much
of the maximum theoretical capacity of the network is actually used to deliver workload. Note
that individual stations connected to the LAN would be modeled as shown in the Local
Perspective, Section 2.1.1.

2.2 TASK 2 - OBJECT MODELING FOR ARCHITECTURE

2.2.1 MANAGED OBJECTS

For our monitor, every managed object is either a physical object like a node, or a network link.
It could also be a logical object like a model of a switch or a model of a link. In fact, all possible
models in which we might be interested pertain to a model class, which would be maintained
within the JMAPI organization as another managed entity.

14

Synectics Corporation Report No. WH97JR00-A002

For a given network, the attributes, or current states of the managed objects (ports, switches, and
links) are obtained in a virtual information store, termed the Management Information Base
(MIB). In our case, we are specifically concerned with the architecture at the network and
physical layers. The SNMP-brokered objects that are to be used by JMAPI are outlined below.
These are the basic variables to be collected to derive models at higher levels of abstractions (for
details, see RFC 1213 [7]).

Note that the following is only a subset of the objects in which we would eventually be
interested. These are the objects, which are currently being used.

For Inbound Traffic from the Network to a Higher Layer

□ iflnOctets (ifEntry 10) Description-Total number of octets in the interface for
inbound traffic, including the framing characters.

□ iflnUcastPkts (ifEntry 11) Description—Total number of sub-network unicast packets
delivered to a higher level protocol.

□ ifUnNUcastPkts (ifEntry 12) Description-Total number of broadcast/multicast sub-
network packets delivered to a higher level protocol.

□ iflnDiscards (ifEntry 13) Description—Total number of inbound packets discarded
due to lack of buffer space.

□ iflnErrors (ifEntry 14) Description—Total number of inbound packets discarded due
to errors.

□ iflnUnknownProtos (ifEntry 15) Description—Total number of inbound packets
discarded due to unknown protocol specification.

At Interface

□ ifSpeed (ifEntry 5) Description-The current estimate of the interface's bandwidth in
bits/sec.

For Outbound Traffic

□ ifOutOctets (ifEntry 16) Description—Total number of octets transmitted to the
network from this interface (including framing characters).

□ ifOutUcastPkts (ifEntry 17) Description—Same as for inbound traffic but now with
changed direction.

□ ifOutNUcastPkts (ifEntry 18) Description—Same as for inbound traffic, but now with
changed direction.

□ ifOutDiscards (ifEntry 19) Description—Same as for inbound traffic, but now with
changed direction.

15

Synectics Corporation Report No. WH97JR00-A002

□ ifOutErrors (ifEntry 20) Description—Same as for inbound traffic, but now with
changed direction.

Ü ifOutQLen (ifEntry 21) Description-The instantaneous length of the output packet
queue in packets.

For Inbound Traffic from the Network Layer to the TCP Layer

Ü ipINReceives (ip 3) Description-Total number of input datagrams received from
interface including those in error.

□ ipInHdrErrors (ip 4) Description-Total number of discarded input datagrams due to
header errors.

Q ipInAddrErrors (ip 5) Description-Total number of discarded input datagrams due to
address errors.

□ ipInUnknownProtos (ip 7) Description-Total number of discarded input datagrams
due to unknown/unsupported protocols.

O ipInDiscards (ip 8) Description—Total number of discarded input datagrams due to
lack of buffer space.

□ ipInDelivers (ip 9) Description-Total number of input datagrams successfully
delivered to IP user protocol (including ICMP).

Note that these variables pertain to input packet traffic from a node to its processes at the
application level. This is distinct from the input data traffic from an interface (at the physical
layer) to its link layer.

For Outbound Traffic (All Traffic from IP User to the Node for Transmission)

Q ipOutRequests (ip 10) Description-Total number of IP datagrams sent to the node for
transmission.

Q ipOutDiscards (ip 11) Description-Total number of outbound datagram discards due
to lack of buffer space.

2.2.2 MODEL ARCHITECTURE

At this stage, we noted the inadequacies of all network models currently in use. As Kleinrock
[1] points out, an exact mathematical model of the system, even if we are lucky enough to
develop it in the first place, may not be tractable in real situations. We always end up with an
approximation even if our model is exact. Secondly, a desirable scheme may be to abandon
exact mathematical models but rely on an approximate model to provide approximate but
sufficiently satisfactory solutions if they correlate well with the predictions of actual

16

Synectics Corporation Report No. WH97JR00-A002

measurements [1]. In order to accomplish this, it may be necessary to learn the model
parameters for an object through appropriate learning models based on the observed pasts and
the performance of the learning process itself. We note that a single model to depict the behavior
of a network object may not be tenable for all workload levels, for all types of traffic and for all
topologies. A multimodel framework is essential. In view of these, our model architecture is
proposed as follows. For a network object K, the managed object server provides a Managed
Model Interface (MMI) in which a number of applicable models for that object would reside (see
Figure 4). This would be true for every managed network object as well as for the model for the
global state computation.

Figure 4. A View of Model Interface

Learning
Module

The model switch would be triggered by the learning module, which would decide how to infer
an object state and, given the currently inferred state, would decide which kind of model would
be chosen and its parameters. Then the managed object would call that specific model object
and run it with the given set of parameters for the current session. What types of models would
be best suited for our network objects was investigated next.

First, we attempted to settle the issue by using the traditional Markov chain model assuming that
the stochastic process {N(t), t>0} is essentially Markov (N(t) being the number of requests,
packets in the system). Even though the situation improved considerably, the state-space
explosion still remained the dominant issue that was difficult to ignore. Secondly, the
computation hinged heavily on the distributions of the various events - the arrival or departure
processes did not need to be renewal processes (independent and identically distributed), which
an embedded Markov chain would minimally require. This made it difficult to proceed
realistically if we needed to depart from the renewal process assumption.

Next we examined our model from another angle. We could provide a mean-value analysis
(MVA) of our network environment based on the observed and estimated means. One could, on
this base model, add the necessary perturbations, like fluctuations about the means, as well as
ordering or scheduling constraints or correlations among different steps and different requests
within the overall scheme of a typical Markovian model. It was then feasible to express the
distribution functions (e.g., number of requests waiting at a node) in a product form, effectively

17

Synectics Corporation Report No. WH97JR00-A002

achieving network decomposition as if each function depended solely on the workload for that
node. It was similar to expressing an arbitrary function as a Taylor series over some elemental
functions. This Jackson model [2] based on the product form of distribution could be used even
though one could not strictly defend it theoretically.

So we proceeded in the following manner. Keeping the overall Jackson model in view, the
network would be functionally decomposed here but without embracing Jackson's assumption.
We assumed that an object was essentially separate from the network, except for what it received
and sent out to the network. The network is seen from the object perspective as another distinct
object with which it interacts continuously but the object is, otherwise, totally independent from
the other objects. The observed stochastic process embracing the object would be viewed
essentially as a Markov process with its parameters appropriately determined using an intelligent
learning system. Essentially, the base models would be primarily Markovian. They would be
queuing-network models (M/M/l, M/G/l, and GI/G/1). Other candidate models included time-
dependent stochastic Petri-net and stochastic process algebra models, along with Fractional
Brownian motion-based and fractional ARIMA models.

The emphasis in Phase I of our investigation was to provide the system with a workable structure
to use in selecting the most appropriate and tractable traffic model from among a collection of
traffic models based on currently observed real-time data and information through collected
legacy data. The model architecture as proposed was the key to our operation. This was
essential for another important reason. If the operational scope for our system is to extend to the
second-generation Internet it must be able to interface well with gigabit per second networks as it
should with megabit per second nets. In the latter case, as pointed out in Kleinrock [3], the
network is primarily bandwidth-driven whereas in gigabit regime, it is latency driven. Obviously
the two require different modeling emphasis and both these distinctions should be available in
the modeling suite.

2.3 TASK 3 - PROTOTYPE IMPLEMENTATION

2.3.1 INSTALLATION OF SOFTWARE

The first item of business was the installation of the software required to support the Real Time
Network Management System (RTNMS). The software in question was the Java Developer's
Kit version 1.1.5 (JDK), the JMAPI version 0.5 beta, Fast Forward's JDBC driver version 1.3,
and SNMP agents on every machine that was to be managed.

The JDK was installed first to facilitate the installation of the other software components, all of
which required the use of the Java interpreter. Then the JDBC driver was installed. This had to
be installed prior to JMAPI so that the API (Application Programmer's Interface) would be able
to communicate with the database server (Sybase version 11), which was already installed on the
machine deemed the JMAPI server. Next came the installation of the JMAPI software itself.

18

Synectics Corporation Report No. WH97JR00-A002

Once JMAPI was installed, it was configured per the documentation's directions. One advantage
was that all the software components utilized were identical to the components used in the
example provided in the documentation, so configurations were almost identical.

The final requirements were the SNMP agents that allow the prototype to get information about a
node. These varied from machine to machine and it was necessary to install different agents for
the different platforms that were to be managed. The SNMP agents were installed on
Windows95, Windows NT 4.0, and Solaris 2.5 workstations. The Windows NT machines have
an SNMP agent built into the system, so it was only a matter of activating those agents. Most
routers today come with an SNMP agent built in as well, including the local router and one of the
AFRL routers.

2.3.2 INITIAL DATA COLLECTION

Once the software was installed, it was possible to start using the classes that JMAPI provided to
collect data from any machine that was running an SNMP agent. However, this involved
considerable time for the researcher to become familiar with how SNMP worked as a protocol,
and to learn the JMAPI SNMP classes. The very first iteration of the data collector did little
more than obtain the system description of the machine that was being queried.

During the process of implementing the data collector, a fault was discovered in how the JDK
1.1.5 worked with one of the classes within JMAPI. Between versions 1.1.4 and 1.1.5 of the
JDK, the developers changed the way in which the interpreter handled Uniform Resource
Locator (URL) information. The ResourceLocator class that came with JMAPI used the method
found in the 1.1.4 version, which would cause NullPointerExceptions. Sun Microsystems
provided an updated version of the class, which once installed, allowed the data collector to
function properly.

With a working, albeit infantile data collector, it was decided to try to run the application as an
applet. An attempt was made, but failed. Thinking this might have something to do with the
collector, focus was turned to the demonstration applets that came as part of the JMAPI
distribution. However, it was not possible to get any of these to work as an applet either. It was
possible to run them as applications only. So, in the interest of continuing development, the idea
of running the RTNMS from a browser was abandoned.

Work continued on expanding the collector. One major hurdle was the way SNMP stores
information about interfaces. The interfaces are stored within a MIß table, and the conventional
way to retrieve this information is one entry at a time, at least in SNMPvl. For purposes of this
program though, all these data had to be collected simultaneously so the change in time could be
observed. After extensive experimental work, the solution was found. It involved accessing all
the elements at once via their entry number extension. Unfortunately, this was not documented
by JMAPI and was discovered intuitively.

19

Synectics Corporation Report No. WH97JR00-A002

Modifications to the data collector continued based on analysis of the data it was collecting and a
growing understanding of the SNMP variables that were being observed. This is where many
misconceptions were revealed.

It was discovered that the queue length variable was the length of the queue within the interface,
and that SNMP had no measurement for the IP queue, probably because there are so many
potential ways to implement the IP layer. This complicated the modeling process, not only
because single queue models were to be used, but also because there was now no way to get the
queue information for IP.

It was also found that some of the SNMP variables collected were unnecessary while some that
were initially overlooked had to be retrieved. The number of routing table entries that are
removed from the routing table was deemed unimportant; it was first thought that this variable
measured some form of packet dropping. It had to do with the source and destination routes
instead. All of the possible errors that occurred within the interface and IP layers were not being
collected. These errors were needed for more accurate models; the number of discarded packets
due to buffer overflows was not sufficient.

It was also at this stage that a rudimentary prediction algorithm was implemented to test its
accuracy. Samples showed that the algorithm's performance varied based on the type of network
activity. Adjusting the weight of the previously predicted and actual readings showed it was
possible to get better results with a variable weight. So the average time error over the set of the
collected data was used to determine how to adjust the weight automatically. This scheme was
used in the final prototype.

2.3.3 CREATION OF JMAPI-MANAGED OBJECTS

With the data collection proceeding, focus was shifted toward how the data were to be stored.
This is where JMAPFs ability to communicate with a database came into play. Actually, JMAPI
requires that it be tied into a database before it will run properly and it stores data in the database
via the ManagedObject class. JMAPI comes with an entire hierarchy based on ManagedObject.
However, this hierarchy was being completely rewritten at Sun and they advised subclassing
ManagedObject directly.

Documentation for creating managed objects was also vague due to JMAPI still being in its
infancy. The hard copy documentation, which was more of a tutorial-type document, gave an
initial starting point, but was outdated and much of the code illustrated was deprecated.
Fortunately, the online reference had the current class definitions and method calls. By doing a
little experimentation, it was possible to create a functional managed object. This first managed
object was little more than an integer value, but demonstrated that it was possible to "set and get"
information from the JMAPI database.

While importing the managed object into the database, it was discovered that the JDBC driver
installed was inadequate. The JDBC driver used was the company's shareware version and
could only handle two simultaneous connections to the database. Consulting with Sun again, it

20

Synectics Corporation Report No. WH97JR00-A002

was learned that JMAPI requires 5 or 6 connections when importing a managed object. The
JDBC driver company was contacted and they sent a 30-day, 50-connection version of the driver
so testing could be done to insure this was the problem with importing managed objects. The
new driver was installed and the managed object was successfully imported. This led to the
purchase of Fast Forward's 15-connection driver.

A large amount of traffic was observed on the loopback port on the JMAPI server during Phase I
prototype execution. After researching the problem, it was found that the JDBC driver was
creating this extra traffic. FastForward, a Type IV driver from Connect Software, is the JDBC
recommended by Sun when using JMAPI. It provides direct access to Sybase SQL (Standard
Query Language) servers. FastForward works by directly transferring and receiving information
from Java to the SQL Server using TCP/IP sockets. The format of data passed back and forth is
Tabular Data Stream format (TDS) [6]. This may be a reason why access to the database was
less than sufficient. Therefore we may look into other JDBC drivers for a more efficient way of
accessing data in Phase JJ.

Once it was shown that the database was working properly and managed objects could be stored
there, design of the managed objects ensued. A rough draft of all necessary managed objects for
the network management system was conceived. At this point more refinement of the
mathematical models and the way SNMP represents the interface and IP layers was required.

One problem was the fact that a node may have multiple interfaces, each of these having its own
queue. Significant work had to be done to adapt the single queue models to the now multiqueued
node. A queue length also had to be mathematically derived for the IP layer.

The IP layer has the potential to fragment and/or reassemble packets before passing them down
to the interface or up to higher layer protocols. This affected comparisons of arrival and service
rate because the rates were in terms of different types of packets. So a fresh look at how the IP
layer fragments and reassembles packets was required. A multiplier was added to the model to
compensate for the discrepancy between the number of packets into and out of the IP and
interfaces. The multiplier going from the interfaces to the IP layer is less than one. The
multiplier from IP to the interfaces is between one and two. This approximates the number of
packets that are resent by the datalink layer, for which there is no SNMP data.

Another multiplier had to be used to calculate the percentage of packets going to each of the
interfaces from the IP layer. This was used in conjunction with the datalink multiplier to
determine how much of the IP output was going to each interface. This was required because
there was no SNMP variable to indicate the number of packets to a particular interface.

The complexity of how the IP layer functions was particularly difficult to model. With IP both
fragmenting and reassembling packets, some of the details of how IP handles packets gets lost.
In addition, IP does not maintain a count of the packets that are lost because of reassembly
errors. So attempts to extrapolate this information were made. In addition to this, some of the
machines being monitored represented the reassembly information differently than the RFC 1213
[7] specifies. The Sun workstation does not give the number of fragments that need to be
reassembled; instead it gives the number of reassembled packets. It is unknown why Sun would

21

Synectics Corporation Report No. WH97JR00-A002

choose to do this in their MIB; perhaps it has something to do with their implementation of the
IP layer.

2.3.4 INTEGRATION OF COMPONENTS

The managed objects were implemented and loaded into the database. These objects were
created the same way normal tables in a database would be created, each one having its own
primary and foreign keys. JMAPI allows the use of associations and relationships between
managed objects, but with the documentation being sparse, it was deemed easier to create the
objects with keys and allow application software to ensure integrity constraints.

With all the necessary managed objects created within the database, it was time to implement the
code to do all the work.

The initial collector would read in the user's information on a node, (name, IP address, node
type, and read community). It would then use that information to query the node to get the
number of interfaces the node has, the IP addresses of all those nodes, speeds, etc., and to
populate the appropriate managed objects with that information.

With this information, whole topologies were created, and the user could select which topology
he/she wanted to monitor. In order to monitor each node as efficiently as possible, the
monitoring software was written to create a thread for each node that was being monitored. Each
thread is responsible for polling the SNMP agent of the node it is monitoring as well as sending
the received data to the JMAPI server to be stored.

Even though the process of collecting data from the SNMP agents is fairly efficient, the process
of using JMAPI to store and retrieve such an enormous amount of data is not. Even with only
six nodes, the time it took to collect and store the data was in the order of minutes. Most of this
time was due to the complex process of using the JMAPI calls to perform the "sets and gets."

A network administrator could then look at all this information with the implementation of the
graphical user interface (GUI). The GUI uses the Java Abstract Windowing Toolkit (AWT)
package as well as the PropertyBook classes that come with JMAPI. This interface provides an
efficient and intuitive way for an administrator to access and analyze all the information that is
being collected about the network.

2.3.5 EXPLANATION OF IMPLEMENTATION

The software used included the JDK version 1.1.5 and the JMAPI version 0.5, both from Sun. In
addition, there was Fast Forward's JDBC version 1.3 allowing JMAPI to communicate with the
Sybase database version 11. Sybase is used to store all the information about the machines being
monitored on the network. SNMP agents were installed on multiple platforms so that the
information about that machine could be collected.

22

Synectics Corporation Report No. WH97JR00-A002

JMAPI is a tool created to aid in the development of network resource and management
applications. It simplifies this task by abstracting every aspect of a network into something
known as a managed object. Anything related to the network is a subclass of this managed
object. Doing this allows the developer to focus on the intricacies of the network to be managed
and not how the information will be stored in the database; JMAPI handles all these details.

Figure 5. Explanation of Implementation

Read collected data from the database
and present it to the user

Add Nodes and Topologies

Graphical User
Interface
(process)

JMAPI Database

Store initial
data in the

database via
JMAPI

Retrieve Nodes in
Topology

Topology Monitor
(process)

0 0 0 0

Each thread connects to and stares
the data in the database via JMAPI

Initial Collector
(process)

Create Thread
for each node

Thread collects SNMP data
from the node file thread
represents

Initially collect information about a node when it is created in JMAPI database
(Number of Interfaces, IP Addresses.etc.)

The application components sit on top of the JMAPI interface. The Initial Collector Process uses
the SNMP classes that came with JMAPI to collect information on a host that is currently being
added to the database. Once a node has been added to the database, it can be added to one or
more topologies and monitored. The initial collector can also be run from within the GUI.

The Topology Monitor is the main part of the Management System. It will take the topology the
user wishes to monitor and will run off a thread for each of the nodes that are within that
topology. Each thread will communicate with the SNMP agent on the host the thread is
monitoring. The thread collects the necessary data and then communicates to JMAPI in order to
get the information stored persistently.

The GUI can then access the data via JMAPI. The interface supports the ability to graph time
series of the collected data, as well as display the network and its utilization based on the data.

23

Synectics Corporation Report No. WH97JR0O-A0O2

The Interface Layer is an abstraction of how the interface card within a computer handles
incoming and outgoing data. Data come into an interface from the network and from higher
layer protocols within the protocol stack. Data from the network are in the form of octets; data
from above are in the form of packets (octets are the number of bytes). Packets are groups of
bytes representing some sort of information. For SNMP version 1.0, the packets can be Unicast
or Non-Unicast. For purposes of the RTNMS, these are summed together. Focus is on amount
of traffic, not types of traffic.

Figure 6. Interfaces According to SNMP Variables

(From IP Layer Protocol)

ifOutUcastPkts
+

ifOutNUcastPkts
iflnErrors iflnUnknownProtos

iflnOctets

(From Network)

iflnDiscards

(To IP Layer Protocol)

, if InUcastPkts
+

iflnNUcastPkts

Interface
Queue

"^T
ifOutDiscards

ifOutErrors

ifOutOctets

(To Network)

As stated before, traffic from the network is in terms of octets. A stream of octets makes up a
packet. This stream is stored in the interface's buffer until it can be processed by the interface.
If too many streams come into an interface and the buffer is not large enough to accommodate
them, some of the streams (packets) will be discarded. The SNMP variable iflnDiscards keeps a
count of the number of packets that the interface loses in this manner. When the interface is able
to process a packet in the queue, it checks the packet for errors and whether or not the packet is
in an understandable protocol. SNMP variables iflnErrors and iflnUnknownProtos count the
packets lost when they do not pass these tests. If the packet makes it past this point, it is sent to
the next protocol up on the protocol stack. The packets that make it are counted in the
iflnUcastPkts and iflnNUcastPkts SNMP variables, depending on which type of packet it is.

When a packet comes into the interface from the higher protocol, it is counted in either the
ifOutUcastPkts or ifOutNUcastPkts, again depending on the type of packet it is. It gets stored in
the same buffer in which the input from the network is stored until the interface can process it. If
the buffer overflows, and some of these outbound packets are lost, they are counted in the
ifOutDiscards variable. If the interface is processing the outbound packet and finds some error
in the packet, it will discard the packet and increment the ifOutErrors variable. Finally, all the
octets that make up the packets that do get processed are counted in the ifOutOctets variable.

Since it was necessary to know the number of packets travelling between the interface and the
network, they had to be derived. The number of packets coming into the interface from the

24

Synectics Corporation Report No. WH97JR00-A002

network can be calculated by summing the number of packets going to higher protocols
(iflnUcastPkts and ifOutUcastPkts), iflnUnknownProtos, iflnErrors, and iflnDiscards. Adding
all the good packets to all the dropped packets should give a count of the total number of packets
coming into the interface from the network.

To calculate the packets that actually make it out to the network from the interface, the number
of packets discarded (ifOutDiscards) and dropped because of errors in the packet (ifOutErrors)
were subtracted from all the packets coming into the interface from the higher protocol
(ifOutUcastPkts and ifOutNUcastPkts). Subtracting the bad packets from the total number of
packets should give the number of packets actually going out to the network.

Figure 7. The IP Layer According to SNMP Variables

(From Interfaces)

iplnReceives

jplnDiscards

(From Higher Layer Protocols)

ipOutRequests

ipOutDiscards

Packets not
needing

reassembly

ipOutNoRoutes

ipForwDatagrams

Non-forwarded
non-reassembled

packets
FragmentatiörT

Algorithm
► ipFragFails

► iplnHdrErrors
► iplnAddrErrors
► iplnUnknownProtos

Packets requiring reassembly
Reassembly Algorithm

ipReasmReqds
—► * ipReasmFails

ipFragCreates

ipReasmOKs

iplnDelivers

(To Upper Layer Protocols)

(To Interfaces)

The IP layer is much more complicated. Depending on which task the machine is performing,
the IP layer may perform differently. If the machine is a router, a great deal of packet
forwarding will occur. It the machine is a host, then no packet forwarding is allowed to occur.
However, if the host is functioning as a gateway, then it will forward packets. This complex
behavior, in addition to the vagueness of some of the SNMP variables, led to significant
confusion.

Figure 7 shows the different directions packets can take through the IP layer. The iplnReceives
SNMP variable counts all the packets coming into the IP layer from the interfaces. This includes

25

Synectics Corporation Report No. WH97JR00-A002

packets from all of the machine's interfaces. These packets can either be destined for the higher
protocols of the machine or forwarded out to the network. The blue line on the graph represents
the path packets would take through the IP if they were meant for higher protocols. The yellow
line is the path forwarded packets would traverse. For hosts, the yellow path would be
nonexistent. For routers, the blue path would see very little traffic, though some would be
present. SNMP requests would show up as such. For a gateway, traffic would be possible on
both routes.

Packets coming from the higher level protocols enter the IP layer and are counted via the
ipOutRequests variable. This is shown on the diagram as the green path.

The crux of the problem is that the IP layer can fragment packets being sent to the interfaces into
smaller packets and reassemble packets that are going up to the higher layers into larger packets.
This is all done because some networks cannot handle larger packet sizes and it is the IP layer's
responsibility to break those packets down so they can be transmitted over those less capable
networks. This also means that the packet counters at different points of the IP layer are not
counting packets the same way. For example, ipInReceives counts the smaller packets, but
ipInDelivers counts the same packets after they have been reassembled. As an example a
quantity of little packets come into IP and ipInReceives counts them. Assume that no discards or
errors occur, and some of the packets are reassembled. ipInDelivers will show a smaller number
of packets going to upper layer protocols than ipInReceives said came into IP, even though there
were no losses. This is because some of the smaller packets are consolidated into their larger,
original size. So ipInDelivers is counting the fewer, larger packets, while ipInReceives is
counting the smaller, more numerous packets.

For the mathematical models to work properly, the inputs and outputs of the IP layer must be in
the same type of packets (small or large). Since the smaller packets correspond to the packets
the interfaces send to and receive of the IP layer, it was decided to try to convert all of the inputs
into the smaller packet size. For a host, this was not much of a problem, but for routers and
gateways, the task was much more difficult.

When dealing with a host, the yellow path in Figure 7 can be eliminated because hosts are not
allowed to forward packets. The ipOutRequests could be calculated in terms of small packets
using the SNMP variables like this.

Little Packets from Higher Protocols = ipOutRequests + (ipFragCreates - ipFragOKs)

This formula takes ipFragCreates, which is the total number of packets created by the
fragmentation algorithm and subtracts ipFragOKs, which is the number of packets that were
successfully fragmented. This results in the number of additional packets created due to
fragmentation. When added to ipOutRequests, it gives the number of little packets coming from
the higher protocols.

SNMP does not have a variable to determine how many packets are being sent to the interfaces
from IP, so this number is derived as well. To get this number, the SNMP variables are used
thusly.

26

Synectics Corporation Report No. WH97JR00-A002

Little Packets to the Interfaces = ipOutRequests + (ipFragCreates - ipFragOKs) -
ipOutNoRoutes - ipOutDiscards

The first part of the formula is the number of little packets from the higher protocols.
Subtracting ipOutNoRoutes and ipOutDiscards gives the number of small packets that make it
through IP and can be sent to the interfaces. These formulas only work for machines that are
running as hosts.

Packets coming into the IP layer from the interfaces are counted in terms of little packets
already, so no derivation of small packets is required.

Packets going from IP to the higher layer protocols are measured in terms of reassembled (big)
packets. This number can be retrieved from the ipInDelivers variable. Getting this number in
terms of small packets is problematic. This is because the reassembly algorithm cannot count the
packets that could not be reassembled. Therefore, SNMP can only count the number of times the
reassembly algorithm incurs a failure. These failures in no way reflect the number packets that
are lost due to those failures. The best way to illustrate why this is the case is to outline how the
reassembly algorithm works.

When the reassembly algorithm receives a packet fragment that needs to be reassembled, it
creates a queue and sticks that packet into it. Packet fragments are, in their own right, packets,
only smaller. It will then place additional fragments belonging to that packet into the queue.
When all of the fragments have been collected, the algorithm will assemble the packet and pass it
along to the next higher protocol. The algorithm will only hold the packet fragments in the
queue for a finite amount of time however. If this time limit is exceeded, the algorithm will drop
all the fragments in the queue and increment the ipReasmFails variable. The problem arises
when failures occur. There is no way to determine how many fragments were lost because of
errors or how many fragments made it through to the reassembly algorithm to become the larger
packets. For the purposes of the prototype, it was assumed that no packets needed reassembly.
Under this assumption, ipInDelivers would therefore be in terms of packet fragments. The data
indicated that reassembly was indeed a rare occurrence for the network we were monitoring. It
is obvious that more work is needed on this aspect of the IP layer.

Another problem was encountered in the way some of the monitored nodes represented one of
SNMP variables. In most cases, we know the number of fragments that need reassembly; the
count is stored in the ipReasmReqds variable. Observation of the collected data shows that
ipReasmReqds on the Sun workstations is a count of the number of whole packets that need
reassembly, not the number of packet fragments that need reassembly.

The number of packet fragments for the Sun machines can be derived, as long as the machine is
functioning as a host. To get the number of fragments, the following formulas were used.

totPktln = ipInReceives - ipInDiscards - ipInHdrErrors - ipInAddrErrors - ipInUnknownProtos

Packets needing reassembly = totPktln - ipInDelivers + ipReasmOKs

27

Synectics Corporation Report No. WH97JR00-A002

If the machine is operating as a gateway, then there is no way to ascertain the number of packet
fragments needing reassembly, because it is not possible to determine how many of the
ipInReceives packets are going to higher protocols and how many are being forwarded.

While considerable work was done, particularly at the IP layer, to model the way nodes behave
in terms of SNMP variables, it is evident that more work is needed. More definitive methods for
calculating packet fragments going into and coming out of the IP layer are required. Another
possibility might be to look into version 2 of SNMP or to implement a customized agent to
retrieve the information required for the mathematical models.

3.0 REFERENCES

1. L. Kleinrock, "On the Modeling and Analysis of Computer Networks," Proc. IEEE, pp 1179-
1190,1993.

2. Allen, Probability, Statistics and Queuing theory. Academic Press 1978.

3. L. Kleinrock, "Channel Efficiency for LANs," Local Area & Multiple Access Networks, R.L.
Pickholtz, Ed. Rockville, MD: Computer Science Press, 1986, pp 31-41.

4. E. D. Lazowska, J. Zahorjan, G. Scott Graham and K. C. Sevcik, Quantitative Systems
Performance, Prentice-Hall 1984.

5. S. Tanenbaum, Computer Networks, 3rd Edn., Prentice-Hall 1996.

6. Sood, Mukul, "JDBC Drivers and Web Security," Dr Dobb's Journal, July 1998, pp 90-95.

7. RFC 1213, http://info.internet.isi.edu:80/in-notes/rfc/files/rfcl213.txt, "Management
Information Base for Network Management of TCP/IP-based Internets: MIBII."

28

Synectics Corporation Report No. WH97JR00-A002

4.0 GLOSSARY

API Application Programmer's Interface

AWT Abstract Windowing Toolkit

CDRL Contract Data Requirements List

CSMA-CD Carrier Sense Multiple Access with Collision Detection

FIFO First In, First Out

GUI Graphical User Interface

ICMP Internet Control Message Protocol

IEEE Institute of Electrical and Electronics Engineers

IP Interface Protocol

JDBC Java Database Connectivity

JDK Java Developer's Toolkit

JMAPI Java Management Application Programmer's Interface

LAN Local Area Network

MIB Management Information Base

MMI Managed Model Interface

MVA Mean-value Analysis

RTNMS Real-Time Network Management System

SAP Service Access Point

SNMP Simple Network Management Protocol

SQL Standard Query Language

SUNY State University of New York

TCP Transmission Control Protocol

TDS Tabular Data Stream

URL Uniform Resource Locator

WAN Wide Area Network

29

